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SUMMARY 

This paper presents a proposed set of acceptance-sampling plans for 

life testing and reliability when the underlying life distribution is of 

the Weibull form. Inspection of the sample is by attributes with the 

life test truncated at a preassigned time, t. A set of conversion tables 

is also provided from which attrüaute sampling-inspection plans of any 

desired form may be designed for the Weibull model or from which the 

operating characteristics of any given plan may be determined. A pro- 

cedure using these tables for applying the MIL-STD-lOfJB plans to reliabili- 

ty and life-testing applications is included. 



INTRODUCTION 

The paper is a generalization of papers by Sobel and Tischendorf1 

2 
~nd by Epstein that appeared respectively in the Proceedings of the 

Fifth and Sixth National Symposium on Reliability and Quality Control in 

Electronics. Related work has also been done by Gupta and Groll3 who 

have extended the Sobel and Tischendorf procedures from the exponential 

form to the gamma form. The garana variable is the sum of exponential 

variables and hence the exponential model is a special case of the gamma. 

In the two papers first cited the authors assume that the underlying life 

density is exponential (Eq. 1) whereas in this paper the Weibull form is 

assumed (Eq. 2). The exponential distribution is a special case of the 

Weibull and so will be covered in the plans and conversion tables. 

f(x) = (l/n) exp [-x/n], u > 0, x > 0 (, j 

Ux) = (ß/r, )(x/t| )ß'1 exp [-(x/n)
ß ], T, > 0, ß>0, x > 0      (2) 

Both f(x) are equal to zero, otherwise. In these and the equations that 

follow, X is a random variable which represents item life for which x 

is its value, jx represents mean item life for the population, and ß 

is the symbol for the shape parameter for the Weibull distribution. For 

simplification in discussion and computation, the characteristic life, 

T) has been used. For the Weibull distribution 

n = n/r(i/ß +i) 

For further discussion of the Weibull distribution as a statistical model 

for lifelength of components or systems, reference may be made to a paper 

by Kao in the Proceedings of the Sixth National Symposium on Reliability 

and Quality Control in Electronics. 



From Eq. (3), it will be noted that for a given r\ the Weibull mean 

life depends on the shape parameter, ß. The effect of differences in the 

parameter on the shape of the distribution, as well as the general nature 

of the Weibull model, may be observed by study of Figure 1. In this 

figure the Weibull probability density function has been plotted for 

various value of ß. A plot for ß « 1, the exponential case, has been in- 

cluded for reference. This initial set of Weibull sampling plans is for 

product for which the value of this parameter is known or can be assumed 

to approximate some given value. Conversion tables and sampling plans 

are provided for nine values for ß ranging from 1/3 to 5» 

A relatively small number but a broad range of values for ß was 

selected for this initial study. The principal objectives were to develop 

practical methods and techniques and to explore the effect of differences 

in value for this parameter (which is the key one for the Weibull distri- 

bution). As the use of this distribution as a statistical model increases, 

additional conversion tables and sampling inspection plans may be con- 

structed for intervening values for ß, particularly in the widely encoun- 

tered region ranging from 1/2 to 2. 

For the procedures and plans developed in this study, lot or product 

quality is evaluated in terms of mean item life, p,. Subsequent work has 

been planned in which related conversion tables and sampling inspection 

procedures will be developed for application when lot quality must be 

evaluated in terms of the instantaneous failure rate, Z(t), at some 

specified life or future time, t. 

FORM OF ACCEPTANCE CRITERIA 

For the plans considered in this paper, the following acceptance- 

sampling procedure for life testing has been assumed: 



1. Select a random sample of n items from the lot. 

2. Put the sample items to life test for some preassigned period 

of t time units. 

3. Denote by y the number of failures observed prior to time t. 

li. Accept the lot if y S c, the acceptance number; if y > c, 

reject the lot. 

Curtailed inspection for accepting lots prior to t is possible for the 

rejection of the lot since it is possible to observe (c + 1) failures 

before time ts 

Note that this acceptance procedure is the same as that specified for 

the MIL-STD-105B5 sampling plans with the exception of the introduction 

of a testing truncation time, t. It is also possible (as for the 105-B 

plans) to employ double or multiple sampling instead of single sampling 

as described above and by so doing reduce the average number of items 

at p« - AQL that must be put on life test. However, the "economy" achieved 

is at the expense of longer elapsed testing time. 

The probability of acceptance for a lot, P(A), under plans of the 

above form depends on the probability, p», of item life being less than 

(or equal to) the test truncation time, t. For cases for which ß is 

known and with time, t, preassigned, p< is thus a function of mean item 

life, |j., only. The operating characteristics of any specified plan thus 

depend only on t and n. In order to provide tables for general use in 

the design or evaluation of plans for any application rather than working 

in terras of specific values for t and p,  the dimensionless ratio t/n will 

be used. In application of the plans or tables to a specific application, 

conversion between the ratio and specific t and n values is extremely 

easy. 



* »et of con^ion UM« has W eaxmted t0 pr0Tlde ,„. ^ Wei_ 

W! di.trl.uUon th. ejection «-« tha di-^^o«. „^ t/lx 

-a p- (T.ba.s x and „.  ¥ith .^ table8 ^^^^^^ piaM of 

deaired t«. can be dasind ar a^luatad „sing attrlbuta aa»pl^ theoriaa 
and practice. 

For oaaaa for .hioh tha lot aiaa, K, u larga in ralation to tha 

aa.pla aiza. n, tha number of faiiurea prior to t approxi^taa tha bi- 

nonial diafihotion rtth para.atera n and p.. whera p. ia daii^d aa tha 

araa ondar tha lifa-laneth diatrihution up to t.    Tha probability or 

aooaptanoa Pft, dapanda on tha au-a.u» nu„bar ol rallu^a prior to ti« 

t.    This probability is given by 

H") - P  (y Jc) .    I    (J, p,y  (i-p.^-V 
yen (<•) 

Iha bino^al diatribntion haa baan aaan^d ior the aa„pli„6 p^ glven ^ 

thi. paper except for caaea for „hich the aa.nple siae ia relatively large. 

For theee, the Poiaacn di5tributio„ te been used as an appro^tion to 

the bincial.    Tha probability „f acceptance for the Poisson is given by 

P(A) • P (y S c) .    t       ("P')1'      e-np' 
y-o y! (5) 

An i^ortant potential use for the conversion tables provided in 

this paper I. in the adaptation of the MIL.SID-105B plans to reliability 

and life-testing applicationa.    m describing the operating characteris- 

tics of these 105B plans, the „uality of subnitted lots ia „eaaured in 

tar» of p.. the par cent defective.    With the conversion factors this 

f.m of description »ay be converted directly to neasurenent in te^ of 

the t/p ratio.    With this conversion tha 105B plans ^y be cataloged for 

appropriate choice in reliabiiity applications.     (Plans have been »de 



for the preparation of tables listing for various values of ß this ratio 

at the AQL and the LTPD for each plan in the 105B manual.) Alternatively, 

if some 105B plan has been selected, its operating characteristic curve 

may be determined in terms of the t/n ratio, or if the testing time, t, 

has been specified, in terms of the lot mean, *.    An example employing 

such a conversion is shown later in this paper. It should also be noted 

that with the matching plans provided in the 105B collection, the options 

of double-sampling and multiple-sampling are also available. The sample 

sizes and acceptance numbers listed may be used and the established pro- 

cedures for employing this form of sampling in attribute inspection may be 

followed. 

COMPUTATION OF CONVERSION TABLES 

The probability, p., of an item failing before the end of test time 

t is given by the cumulative distribution function (c.d.f.). For the 

Weibull model the equation for this function is 

cd.f. o F(x) - 1 - exp l-xß/a]. 

The equation for the mean, n, of the Weibull distribution is 

n » a,/ß r(i/ß + i) . 

Computations may be simplified by the following substitutions: 

b - 1/ß 

(6) 

(7) 

(8) 

^ (9) 

Equation (6) then becomes - 

F(x) - 1 - exp[.(x/n)l/b] ^ 
(10) 



and Equation (7) becomes 

n   =    TJ r (b+i) 
(II) 

The probability, p«, of an item failing before the end of test time, 

t, is thus given by 

F(t)    -    !    .   exp [-(t/T,)1^] = p.   . 

This may be rewritten as 

1/(1 - p.»)    -   exp [(t/rj)1^]    , 

which in turn may be converted to 

-In (1 -p«)    -    (t/T,)l/t 

where In denotes the Naperian logarithm. 

Raising both sides of the above equation to the b power gives 

Hn(l-p')]b = t/r,   . 

This equation may be solved for TJ to give 

1 = t/[-ln(l-p')]b     . 

But from Equation (11), 

Ti = M/r(b+l)    . 

Substitution of this value for TJ in Equation (16) gives: 

n/r(b+l) =t/ Hn(l-p')]b , 

or    t/fx - Mn(l-p')]b / r(b+() . 

(12) 

(13) 

(HO 

(15) 

(16) 

(17) 

(18) 

(19) 

This equation establishes the relationship between the dimensionless ratio 

t/ji and p«, the probability of item life being equal to or less than t. 

7 



It my be noted that for the attribute form of sampling inspection 

considered here, onOy this dimensionless ratio between test time, t, and 

item mean life, *,  need be of concern. The Weibull scale parameter^ 

(or its equivalent characteristic life, „ ) has been eliminated. In the 

mathematics of these plans and procedures it has been assumed that the 

Weibull location parameter, 7,has a value of 0. If in application, 

however, 7  has some non-zero value, all that is necessary is to subtract 

the value for 7  from the value for t to get to, and from the true lot 

mean jx, to get ^ These converted values, to and ^ are then used for 

all computations. Any solutions in terms of to or % can be readily con- 

verted back to real or absolute values by simply adding the value for7. 

This procedure for handling the location parameter will be illustrated 

later in Example 3. Only the parameterß (or b, which is l/ß) must be 

known. 

To put this relationship equation (Eq. 19) m a form for which nu- 

merical values for relationships may be more easily computed, the fol- 

lowing change may be made: 

(20) 
- exp{ b In [-ln(l-p')]} /r(b+l) . 

Values for the expression 

In [-In (1-pi) J (2|) 

were obtained from a table of the inverse of the cumulative probability 

function of extremes prepared by the National Bureau of Standards.6 

This table tabulates the function 

- In (- In « ) . 
(22) 

8 



By substituting (1 - p') for 9    the negative value of Expression 21 is 

obtained. Values for e raised to this power were read from the National 

Bureau of Standards tables of the exponential function.7 Values for the 

gamma function, r(b ♦ 1), were obtained from a table prepared by Dwight,8 

A table of values for the per cent truncation, (t/ji) x 100%,  for 

various values of p« has been prepared. It is presented as Table 1. 

Values for p» range from .010^ to 80* with the tabulated values selected 

in accordance with a standard preferred number series. For convenience 

in both tabulation and use, both the ratio t/|i and p» are expressed as 

percentages rather than decimal ratios. 

For determining without interpolation the value for p' when some 

rounded value for the (t/p.) x 100 ratio is given, the relatively simple 

task of preparing a table of p' has been carried out. Referring to pre- 

vious equations it was noted that 

t/y.    - Mn(l-p')]b/r(b+l) .      Eq.(20) 

Raising each side of this equation to the ß power gives 

(t/»)K  -ln(l-p')/[ r(b+l)]p . (25) 

From this, an expression giving the value for p» is found. It is 

p' - 1 - exp{ -(Vn)P [ r(b+l) 3ß}  . (24) 

The table of values for p» for various values for (W) x 100 is 

presented as Table 2. Values for (W) x 100 range from .010 to 100. 

Again, the values used for tabulation form a preferred number series. 

With this alternate table available together with the basic original one 

(Table 1), a conversion may readily be made either way—from (t/V) x 100 

to p» or from p« to (t/v,  x 100, Also, it will be noted that the two 

9 



Supplement each other in that ß values giving a compressed range of 

figures in one table give an expanded range in the other. This allows 

for somewhat more precise interpolation in conversion. The two together 

supply basic data for the design or evaluation of any life-testing and 

reliability sampling inspection plan based on the Weibull (or exponen- 

tial) distribution and of an attribute form. For general information, the 

relationship between the (t/ji) x 100 percentage and p» as given by these 

two tables has been plotted in Figure 2 for each of the various ß values. 

ESTIMATION OF THL SHAPE PARAI'JETER 

In many applications the shape parameter, ß, may be known for the 

product in question. From past analysis of life testing results, it may 

be established that some value of known magnitude may be expected regularly 

and so may be used in sampling inspection procedures. For example, for 

a certain class of electron tubes of receiving type, Kao9 has found from 

study of approximately 2,000 tubes of a variety of types and applications 

that a value of 1.7 may be appropriate. For ball bearings, Lieblein and 

Zelen  found a mean value of 1.51 with <&%  of approximately 5,000 bear- 

ings tested having ß in the interval 1.17 to 1.7U. 

For products for which the value for ß is not known, this parameter 

must be estimated using failure data from past inspection and research. 

Such data may be available in either grouped or ungrouped form. 

Ungrouped Data 

In this case the failure data will consist of the exact life length 

of each of the r items that fail out of the n that are tested. These 

life values may be listed in order and designated by the notation 

0 <    <      <       < 
x|  " x

2 • • •B x
r _ 2. a    \    • The method of maximum likelihood 

10 



may then be applied and an estimate for ß, (ß),  obtained by solving the 

following equation: 

r 'N ß 

(l/D { Z    ** +  (n-r)  x* J - l^-^^J r .  (25) 
r/ß + Z  In x. 

Grouped Data 

For this case the failure data will consist of the numbers failing, 

f, during each of a series of k conveniently chosen inspection time in- 

tervals, z.    This ordered paired data may be noted as z , f j z f . 
1  1 2*    2 

"" Zk  - 1' fk - 1' V fk where zi < z2 ••••<zk and where fi + f2 + 

.... fk - r. The maximum likelihood estimate for the shape parameter 

(and for the scale parameter, a, as well) are obtained by maximizing the 

expression 

-i-(jf. fr>*fml     ^'nce-^.e— ,. (26) 

For grouped data the method of minimized chi-squares may be used. Esti- 

mates for the two parameters are obtained by minimizing the expression 

k 2   
2/<      k "Z,-|     -Zj 

'" " >. " '  ^ * jf, '^ ' « "  -^ • (37) 

Graphical Method 

The above methods for estimation, it will be noted, are quite in- 

volved. For accuracy and economy in computation a high-speed electronic 

computer must be used. However, a simple graphical method for estimation 

of the Weibull parameters has been devised. Estimates are obtained by 

Plotting failure data on Weibull probability paper. The method depends 

11 



on the fact that the Weibull edf     vfv\      <        ^   ^ e weiouij. c.d.f., F(x), gXven by Eq.   (6) becomes a 

straight-line equation upon a double logarithmic transformation. 

Thus 

In In 
T'- F(x)    "    "I« ö + ß In  (x)  . (28) 

This Weibull paper has In In versus In coordinates so the c.d.f. „ill 

Plot as a straight line. Convenient scales are provided for direct 

Plotting of raw data and for obtaining the desired parameter estimates. 

Further discussion of the above estimation methods may be found in 

papers by Kao> * Also, in a recent study by Weiss a method has been 

detemined that may be used to estimate this parameter by transformed 

sample spacings,12 

USE OF THE CONVERSION TABLES 

One form of application that should be of considerable use is that 

of evaluating the quality protection afforded by a proposed or existing 

acceptance-sampling plan. A possibility of immediate interest is the 

use of a plan from the MIL-STD-105B Tables. 

Example (1) 

Suppose, for example, that a 105B plan with an Acceptable (^ality 

Level (AQL) of 2.5% and Sample Size Letter J has been proposed for 

use. Reference to the 105B Tables shows that for single sampling a 

sample size of 75 items and an acceptance number of k  is specified. 

Suppose life testing time is to be 80 hours with simply a count made 

of the test items failing by the end of that period. From inspection 

experience with the product to which the plan is to be applied, it 

seems most appropriate to assume a Weibull distribution with a value 

for ß of 1 2/3. The lot size will be relatively large compared to 

12 



the sample size of 75 so binomial probabilities for sample items can 

be assumed. Actually, Table III of MIL-STD-10SB specifies that the lot 

size should be from 1300 to 3200, 501 to 800, and 181 to 300 for 

Inspection Levels I, II, and III respectively. 

The first step is to determine the probability of acceptance, 

P(A), for various values of p«. These probabilities can readily be 

obtained from any one of the readily available tables of the cumulative 

binomial terms or tables of the incomplete beta distribution. They may 

also be read from the operating characteristic curves published as a 

part of the MIL-STD-105B Tables. A few of these values for this plan 

are shown in the first and second columns of the tabulation below. 

Next, the first of the conversion tables. Table 1, is used to obtain 

values for the ratio (t/V) x 100 for each of the p» values. These 

table values are listed in the third column. Finally, using the value 

for t of 80 hours each of the (t/n) x 100 ratios are converted to 

values for ji. For example, the ratio for a p« of $%  is I8.8I1, Thus 

(80/|j,) x 100 « l6o6h  or n - k2$  hours. These computations have been 

made with results as shown in the last column. One may now note that 

if a lot is submitted to this plan whose mean life is 215 hours, the 

probability of its acceptance is only .01 or one in a hundred; on the 

other hand, if the mean life for a lot is 7U5 hours the probability 

of acceptance is .98. These probability and mean life figures based 

upon t - 80 hours can be plotted, if desired, to give the operating 

characteristic curve.  (Of course similar 00 curves for other known 

values of t may be plotted.) This curve is the one ghown for ß - 1 2/3 

in Figure 3» 

13 



P' (in %) 

2 
3 
1* 

6 1/2 
8 

10 
12 
15 

(A) (t/n) x 100 ^ 

.98 10.77 7U5 

.92 13.78 580 

.82 I6.ii2 1*90 

.68 i8. eu U25 
M 22.15 360 
.27 25.20 315 
.12 29.01 275 .ou 32,58 2U5 
.01 37.63 215 

To indicate the importance of considering the shape of the life 

density for a product, operating characteristic curves for this plan 

have been computed and plotted in Figure 3 for other selected values for 

ß. Included is a curve for the case in which ß equals 1. This repre- 

sents the exponential distribution widely used as a model in reliability 

and life-testing sampling inspection. From these curves it may be noted 

that if the underlying distribution is actually of the Weibull form and 

the exponential is assumed, the actual operating characteristics of the 

plan may differ very much from those contemplated. A discussion of the 

sensitivity of statistical procedures in current use to departures from 

the assumed exponentiality will be found in a paper by Zelen and Danne- 

miller. 

It may be noted in connection with this example that the MIL-STD-105B 

plans include matching double and multiple sampling plans. These offer 

alternative possibilities for reliability and life testing applications. 

If incoming lots are either quite good or quite bad (as is commonly the 

case), substantial reductions in the number of items that must be tested 

may be made. If items are expensive and if testing is destructive (as 

it most likely will be in life testing), a reduction in average sample 

size may be of importance. If the test period, t, is relatively long, 

however, the elapsed time required for testing a second sample (or 

11» 



subsequent ones in mltiple sampling) when such samples are required to 

reach a decision may raise difficulties. 

Example (2) 

For a second example consider the case of a manufacturer who 

knows that his current production of a certain component has a mean 

life of approximately 52,000 cycles. Furthermore, he has learned from 

his past experience with life testing of these components that he can 

assume a ß value of 1/2. A life test period of 1000 cycles seems 

justifiable and facilities are available for testing a sample of 1^0 

items from each lot. This manufacturer would like to know what accept- 

ance criteria to apply so that virtually all lots will be passed as 

long as the expected mean life of 52,000 cycles is maintained. He 

would also like to know what consumer protection will be afforded. A 

final question is whether for this application changing to a proposed 

test period of 300 cycles and a sample size of 500 items would yield 

comparable or better quality assurance. 

The first step toward answers to these questions is to compute 

the (t/jx) x 100 ratio at the mean life considered acceptable. This 

ratio is (1000/52,000) x 100 or 1.93. Entering Table 2 with this 

value gives (with rough interpolation) a value for p> of 18$ for a 

P value of 1/2. Assuming a probability of acceptance of .95 is de- 

sired for lots at the acceptable quality level of 52,000 cycles for 

the lot mean, entering a table of the cumulative binomial distribution 

indicates an acceptance number, c, of 35 items gives this probability 

for a sample size of 150 items. This, then is the desired acceptance 

criteria. 

15 



A simple measure of consumer's protection is to find the lot 

mean value at which lots will lilce^ be rejected. Suppose a probability 

of rejection of .90 (of acceptance of .10) seems to be a meaningful 

figure. Reference again to a binomial table indicates that for n - 1*) 

and c - 35, the probability of rejection is .90 at a p. of approxi- 

mately 28.U*. Entering Table 2 with this value gives a (t/V) x 100 

ratio of approximately 5-7. Substituting a value of 1000 cycles for 

t in this ratio and solving for „ gives a lot mean of 17,500 cycles. 

This figure for consumer-s protection can be interpreted as follows- 

since this quality (^ . 17,500) corresponds to a P(A) - .10, under 

this sampling plan (n - ISO, 0  - 35) on the average 90^ of the lots 

passed to the consumer will have a mean life of no less than 17,500 

cycles. This may or may not represent adequate consumer protection. 

If it does not, a plan with a larger sample size must be designed 

and used. 

An answer to the third question may be found by making similar 

computations for an n of 500 items and a value for t of 300 cycles. 

In this case (t/n) x 100 equals (300/52,000) x 100 or .58. From Table 2 

it is found that p. is approximately lOJg at this truncation ratio. 

Scanning a binomial table indicates an acceptance number of 62 will 

give a probability of acceptance of .95 or more when the sample size 

is 500 items. With this sample size and acceptance number, the proba- 

bility of rejection is .90 at a p« value of approximately 1U%,    With 

this value for p., a (t/V) x 100 value of approximately 1.15 is found 

from Table 1. Substituting 300 cycles for t in this ratio gives a 

lot mean value of 26,100 cycles as compared to 17,500 cycles for the 

first plan. Thus this combination of sample size and length of test 

16 



period gives better discrimination between good and bad lots and the 

consumer is therefore better protected. 

Example {3) 

In this example, reference will be made to a case for which the 

component life  can best be characterized by a mixture of two Wei- 

bul distributions. Kao1^ gives an example of this for the life of 

electron tubes. Prom the electron tube life experience, the wearout 

failures, i.e., drift of electrical properties beyond some set limits, 

invariably occur near the latter part of life. Hence the failures of 

electron tubes are classified both as of the wearout type and as of the 

non-wearout or catastrophic type, each type being represented by a sub- 

population of the whole. In electronic terms, these failure types are 

referred to as electrical rejects and inoperative rejects respectively. 

The catastrophic (or inoperative rejects) sub-population is assumed 

to start at time zero, i.a, the location parameter 7( - o, when the 

components are exposed to risks. The wearout (or electrical rejects) 

sub-population is assumed not to start until some delayed period has 

elapsed, i.e., ^ > o, since the limits set on the component drift 

depend on many factors such as environmental stress, maintenance po- 

licy, legal regulations, etc. Since, in general, failures due to wear- 

out and non-wearout reasons are identifiable, it is possible to treat 

the two sub-populations separately. 

Suppose that for some application of electron tubes, the manu- 

facturer's past experience indicates that the Weibull shape parameter 

associated with the catastrophic sub-population, ß( B 1/2 and that 

associated with the wearout sub-population ß,, - 3 1/3 are reasonable 

values, and furthermore that electrical drift or wearout failure has 
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never been experienced prior to 1000 hours of life ( y, - 0, ^ - looo). 

Suppose further that the manufacturer knows that approximately 2 1/2% 

of the total tube failures are of the inoperative type and that the 

mean life of his current production is, 

^ - (.025) (25,000) ♦ (.975) (11,000) - 11,325 hrs 

where ^ - 25,000 is the mean life of the catastrophic sub-population 

and ^ - 11,000 is that of the wearout sub-population. (See the ap- 

pendix of the paper by Kao1^ for the derivation of this formula.) 

A life test period of 500 hours for inoperatives and of 5000 hours 

for electrical drifts are recommended and acceptance numbers ^ - 2 

and c2 . 2 for each failure type are considered satisfactory, ^hat 

are the necessary sample sizes so that the producer's risk is no more 

than 5^? Also, what would be the consumer's protection under this 

sampling plan? 

To answer these questions, the two sub-populations are treated se- 

parately and are denoted by subscripts 1 and 2 as done before for the 

inoperatives and electrical drifts respectively. For inoperatives, 

(V^) x 100 - (500 x 100) /25,0O0 « 2.0. Entering Table 2 with 

this value gives a value for p{ of 18.13*5 for a ß value of 1/2. From 

a binomial table with P(A) a .95 and p{ - I8.l35g, a value for ^ = 5 

is obtained. The same binomial table for n. - 5, „ - 2 and 

P(A) * .10 gives pi - 75^. Entering Table 2 with this value gives 

(t^) x 100 . 96.5 and ^ . (500 x 100) /96.5 - 5l8i2U hourSi a 

value which will be commented on later. For electrical drifts, y2 

must be subtracted from tj, and ^ giving new values for t2 and ^ 

equal to U,000 and 10,000 respectively. Hence, (t^) x 100 = ' 

(U,000 x 100) /10,000 - i,0.0 . Enters Table 2 with this value 
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gives for p. a figure of 3.2S^ for ft ß ^ Qf ^  ^  ^^ ^ 

binoMal table with P(A) ^ .95 and p. . 3.25*5, it is found that 

n2 - 25,  The same binomial table for n2 - 25, 0,, - 2, P(A) s .w 

givea p. . 20$, Entering Table 1 with this value gives (t^) x 100 • 

71.0k,    Thus Ma - (MOO x 100) /71.0U - 5,631 hours, which upon re- 

addlng r2  gives 6,631 hours. Combining this value of corrected ^ 

with ^ obtained for inoperatives gives the consumer's protection2 

expressed in terms of a mean value equal to, 

^ - (.025) (518,21;) ♦ (e975) (6,63!) . g^g ^^ 

This means under the sampling plan of running a life test for inopera- 

tives of n =• 5 and c - 2 for 500 hours and another life test for 

electrical drifts of n - 25 and c - 2 for 5000 hours, 90%  of the 

lots passed to consumers will have a mean life of at least 6,^8 hours. 

To illustrate the danger of extrapolation in a mixed distribution 

case, assume that the second test of 5000 hours duration was not run 

at all, then the producer could only base his conclusion upon the 

500-hour test and claim as consumers« protection, with 90% confi- 

dence, a mean life of at least .518.2^0^3, a result which is 

altogether too modest. 

REIATIONSHIP BETWEEN ACCEPTABLE AND UMfcCCEPTABLE LOT QUALIIY 

Sampling plans are most conveniently cataloged, selected, or de- 

signed in terms of a producer's risk and a consumer's risk. Some lot 

quality figure will be specified as satisfactory and for lots of this 

quality or better the probability of acceptance should be high, conven- 

tionally .95 or more (the producer's risk of rejection small, .05 or less). 

For these plans for life testing, this specification will be a lot mean 
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life, ^95,at which P(A) ä .95. Likewise, an unsatisfactory quality level 

will be specified for which the probability of acceptance will be low, 

conventionalUr .10. This specification will be a lot mean life, n  , 

at which P(A) s .10.  (For other values of producer's and consumer's 

risks reference may be made to a paper by Kao.1^) 

In plan selection or design, one objective is to find a combination 

of sample size and acceptance number which simultaneously yields the 

desired values for both the consumer risk and the producer risk. If 

working from tables of plans, the values for lot quality at the two risk 

figures may be listed. In the design of a plan, one may cut and try 

until a suitable plan is found in a manner suggested in Example 2. Also, 

factors are available which, in conjunction with the conversion tables 

supplied here, enable a direct determination to be made.16 

A simple alternative solution for the form of plan discussed here is 

to make use of one of its properties, namely that for a given acceptance 

number, c, (and for a given value forß ) the ratio between the lot means 

at the two risk values is approximately constant for all values of sample 

size, n. These ratios (or multipliers) have been determined for values 

for c ranging from 0 to 15 for each of the various values forß . They are 

presented in Table 3. The table values are in the fom of multipliers 

for finding n^, given n 10, or using the reciprocal of the multiplier, 

for finding n ^ given n^. That is, n^ (for which P(A) - .95) is 

equal (approximately) to »^  (for which P(A) = .10) times the appro- 

priate table multiplier. These multipliers may be used both to assist 

in evaluating the operating characteristics of some given plan and to 

assist in the design of a plan to meet some acceptance-inspection re- 

quirement. 
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Example (U) 

For a certain purchased component the lot mean life should be 

at least 1^,000 hoursj this value is accordingly chosen for *  ,A. 

Also, the producer has been informed that lots whose mean life is 

10,000 hours or more are reasonably sure of acceptance through the 

sampling procedure. Accordingly, this value is to be used for n .. 

A value for ß of 1 can be assumed. A testing period, t, of 200 hours 

has been specified. Values for sample size, n, and acceptance number, 

c, must be found to meet these requirements. 

The ratio between the two lot means, n#^^ , ig 10,000A,000 or 

2=5 . Examination of the table of mean life multipliers. Table 3, 

under the column f or ß - 1 indicates that an acceptance number, c, 

of 10 items will give this ratio. The (t/lO x 100 ratio at n 

is (200A,000) x 100 or 5. Entering Table 2, the table of pt] with 

this truncation ratio value of 5, gives a pi of U.8835. Reference 

to a table of the cumulative binomial distribution or use of the 

Poisson approximation for c - 10 and p> . .OJ488 at P(A) = .10 shows 

that a sample size, n, of 315 items meets the requirements. A check 

for this solution can be made, if desired. For n = 315, c = 10, and 

P(A) = .95 the Poisson approximation indicates a p« of 1.96$. Entering 

Table 1, the table for per cent truncation, with this value for p', 

a value for (t/V) x 100 of approximately 2.0 is found. Solving for 

^95 yields (200A0 x 100 - 2.0 or ^ . io,000 which is the desired 

value. 

TABLES OF SAMPLING PLANS 

A set of tables of sampling inspection plans has been prepared, one 

table for each of the niije values for ß for which the relationship 
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between p. and (tM , 100 ^ ^ eBtablishedi    ^^ ^ ^^^ 

as Tables i^a through hi. 

Baeh UM. liste valuee for the .cceptance nuaber, =, and for the 

■—. ee.pm ,1M. „, ,„ . TOrlety of ol)Jective ^ ^^^   iii8 

paane are deslened 30 that if 100 tinee the ratio between the teet tine, 

t, and the no« iifs value t„ tho ^ ^ or ^ ^ ^ ^ ^ ^ ^ 

greater than the .elected oolnnn «„,. in the Ubu> the probabiuty of 

ecoeptanoe, P(A), wiU he .10 or lese,    stated otherwiee, the plane 

aeenre with W confidence or „or, the acceptance of lots for which the 

<t/p) , 100 ratio is e^oal to or less than tho selected colu™ or objoc 

tive valne.    The ratios in the coin™ ladings ffor which the pOans have 

been dasind) ™y thns b. considered in the sane way as Ic tolerance 

Per cent dofective (IIH)) .aloes ,re in describing operating characteris- 

tics of the widely used attribute and variables acceptance plans. 

It has been ass™ed that in acceptance inspection for reliability 

the consuls ris. will be of pri»^ ooncern.    Por this reason, these 

Plans have been catalc6ed by P(A)  .  .l0 ratios uhich mmn ^^ 

protection.    However, in addition for each plan the  (t/p) x 100 ratio 

is given for which the probability of acceptance is  .,5 or «re.    Each 

such P(A) . .» rati0 value is shown in parentheses vmder the corresponding 

sa^le siss n^cber.    These ratio values nay be consider si^lar to 

acceptable quality level U,L) Values ^ lndicatin6 the ^^ ^ 

If tho nean Ufa for the it«M in the lot is such that the t/p ratio is 

equal to or less than the tabulated value    th.™ i. u^aMjo vauue, there is assurance with con- 

fidence of 95« or »or. that the lot „ill be accepted. 

The two ratio values, one in the coin™ heading and the other in 

parentheses below the sample si,e number, hroadiy describe the operating 
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characteristics of each plan and so form a basis for making an appro- 

priate choice for any acceptance inspection application. These values 

may also be used to determine approximately the operating characteristics 

of any acceptance plan that has been specified or that is in use and 

for which n and c match closely one of the table plans. It is easy to 

convert these ratios to hours, cycles or some other measure of lifelength 

to fit the product and test specifications involved. This will be illus- 

trated by two examples which follow later. 

In the preparation of these plans, binomial tables prepared by 

17 
Grubbs  were employed for values for c up to 9 and for n up to 150. 

For higher values of c and for values for n up to 60 or so, the Pearson 

tables of the incomplete beta-function were used.10 Higher values of n 

were dotenained by the Poisson approximation, using a table of npi« 

values prepared by Cameron.1  The Poisson match was checked and was 

found close, even for the smaller sample sizes and large values for p». 

The slight differences that may exist in some cases is on the conserva- 

tive side; the value for n is slightly larger than that theoretically 

required. As this is primarily an exploratory study, plans showing 

extremely large sample sizes have been included to indicate the order 

of magnitude involved and not with the expectation that samples of this 

size would ordinarily be used. 

Example (5) 

An acceptance inspection plan is required which will assure 

with 90%  confidence a mean life for items of 1^,000 hours or more for 

each lot accepted. Also, it will be desirable to assure the pro- 

ducer that if the mean life for items in a lot is 25,000 hours or 

more, there will be a high probability (.95) of its acceptance. 
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A test period of hOO hours for the inspection of sample items has 

been specified. Through past experience it has been determined that 

the distribution of item life is of the Weibull form with ß equal 

to approximately 1/2. 

For these sampling plan specifications 100 times the ratio of test 

time, t, to mean life, ^ is (U00A,000) x 100 or 10 for which a 

probability of acceptance of .10 or less is desired. At the ,9$ 

probability value the ratio is (400/25,000) x 100 or 1.6. A plan 

approximating this may be found in Table i* which gives plans for 

distributions for which ß - 1/2. The column for which (t/tf  x 100 - 10 

is entered and scanned for the ratio value 1.6 among the values listed 

in parentheses. This value is found well down in the column. The 

corresponding sampling inspection plan specifies a sample size, n, of 

U3  and an acceptance number, c, of 11. 

Example (6) 

A sampling inspection plan specifies that a random sample of 

3000 items be drawn from the lot and tested for a period of 1,80 

hours. If no more than 7 items fail before the end of the test 

period, the lot is to be accepted; if more than 7 items do not live 

through the test period, the lot is to be rejected. Life measure- 

ments for past inspection and research for the product to which the 

plan is to be applied indicate the distribution is of the Weibull form 

with ß equal to approximately 1 2/3. The prospective user of this plan 

would like to know what quality protection will be given. Inspection 

of Table hd which lists plans for ß - 1 2/3 discloses a plan match- 

ing reasonably well the one specified, the plan for which o, the 

acceptance number, is ? and n, the sample size, is 3,019. For this 
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table plan the (t/jx) x 100 ratio at P(A) - .10 is U. Substitution of 

the specified test period length of 2|80 hours for t gives (U80/n) x 

100 - it. Solving for ii gives 12,000 hours as the mean value for item 

life for the lot for which the probability of acceptance is .10 or 

less. A similar substitution for t using the ratio at which P(A) - 

.95 gives ikBO/n)  x loo • 2,1, Solving for H again gives 23,000 

hours as a lot mean value for which the probability of acceptance is 

.95 or better. The values for the lot mean at these two probability 

values broadly, but very practically, describe the operating charac- 

teristics of the specified plan. 

In the use of these tables of plans, several points of practice 

should be noted. First, in using the p» values associated with values 

for (t/ii)  xlOO for the Weibull distribution to find values for c and n, 

the binomial probability distribution has been used. Hence the size of the 

lot should be relatively large compared to the size of the sample for 

the stated probability values to precisely apply. Second, if a plan is not 

available for which a (t/|i) x 100 ratio in the column headings matches 

closely the desired ratio, to be conservative, a plan should be chosen 

from the column with the next smaller ratio heading. This will assure 

with confidence greater than 90^ the specified mean life for acceptance. 

If the acceptable quality level (the ratio or mean life for which P<A)=.95) 

must also be guaranteed and a matching ratio value is not found in the 

selected column of plans, a plan with the next greater value should be 

selected. Lots equal to or better than the specified "acceptable quality" 

will have an assurance of greater than 95% of being accepted. With 

proper care, some rough interpolation may be employed between listed 

sample sizes (either down or across the table or both) to find a new 
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plan having more nearly the desired characteristics. Finally, if a 

plan is found for which the desired and given ratios closely match but 

for practical reasons it seems desirable to round off the sample size to 

the nearest number ending in zero or five, such rounding off should be 

done to the next larger size. This will assure retention of the proba- 

bility values of .10 or less for the ratios given in the column headings. 
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TABLE 1 

Table of Values for Per cent Truncation, (t/V) x 100 

39.09 
1*2.69 
i*5.71 
U9.57 
52.88 

32*. 93 
36.57 
38.68 
U.59 
hk'01 

1*6.09 
1*9.59 
52.50 
56.18 
59.29 

1*3.1*0 
1*5.02 
1*7.09 
1*9.90 
52.21 

51*.17 
57.1*5 
60.13 
63.1*6 
66.26 

35.37 
51.08 
69.31 

10U.98 
160.91* 

60.29 
7l*.79 
89.32 

115.23 
11*8.91 

36.63 
1*0.31* 
1*5.1*8 
53.30 
60.53 

67.39 
80.61; 
93.95 

115.61 
11*3.14 

1*5.82 
1*9.50 
51*.1*9 
61.85 
68.1i7 

7U.62 
86.15 
97.33 

111*. 92 
136.31* 

56.73 
60.11 
6U.60 
71.01; 
76.67 

81.79 
91.09 
99.82 

113.06 
128.53 

62.85 
65.96 
70.05 
75.83 
80.80 

85.26 
93.27 

100.67 
111.68 
124.27 

69.1*1* 
72.18 
75.73 
80.68 
8U.89 

88.62 
95.22 

101.21 
109.98 
119.79 



TABLE 2 

Table of Probability Values at Truncation Point, p.  (*) 

kvWx 100 
V3       1/2 

.010 

.012 

.015 

.020 

.025 

.030 

.oho 

.050 

.065 

.080 

0,09 
8.57 
9.20 

10.08 
10.82 

ll.ii5 
12.53 
13.2*3 
li*.56 
15.52 

16.61 
17.56 
10.78 
20.k6 
21.86 

23.06 
25.06 
26.71 
28.76 
30.^7 

l.iiO 
1.51» 
1.72 
1.98 
2.21 

2.^2 
2.79 
3.11 
3.5U 
3.92 

ii.37 
ii.78 
5.33 
6.13 
6.83 

7.1*5 
8.56 
9.52 

10.78 
11.88 

32.hO 
3ii.03 
36.12 
38.9U 
ia.22 

U3.Jii 
1*6.28 
hB.dO 
50.90 
51*. 30 

56.98 
59.19 
61.92 
65.1*5 
68.17 

70.37 
73.79 
76.36 
79.28 
81.1*9 
83.75 

13.19 
11*.35 
15.90 
18.13 
20.01* 

21.73 
21*.61* 
27.11 
30.27 
32.97 

36.06 
38.73 
1*2.17 
1*6.87 
50.69 

53.91 
59.12 
63.21 
68.02 
71.77 
75.69 

.010 

.012 

.015 

.020 

.025 

.030 

.01*0 
.050 
.065 
.080 

.10 

.12 

.15 

.20 

.25 

.30 

.1*0 

.50 

.65 

.80 

1.00 
1.19 
1.1*9 
1.98 
2.1*7 

2.96 
3.92 
1*.88 
6.29 
7.69 

Shape Parameter - ß 

1 2/3 2 2 1/2      3 1/3 

.001 

.002 

.003 

.001* 

.005 

.009 

.012 

.019 

.027 

.038 

.052 

.076 
.12 
.18 

.21* 

.39 

.56 

.89 
1.22 

9.52 
11.31 
13.93 
18.13 
22.12 

25.92 
32.97 
39.35 
1*7.80 
55.07 
63.21 

1.77 
2.39 
3.1*5 
5.51 
7.89 

10.56 
16.1*7 
22.98 
33.26 
U3.51* 
56.35 

.001 

.002 

.003 

.005 

.008 

.on 

.018 

.031 

.01*9 

.071 

.13 

.20 

.33 

.50 

.78 
1.12 
1.75 
3.09 
1*.79 

.001 

.002 
.001* 
.007 

.012 
.021* 
.ou 
.080 
.13 

.23 
.37 
.61* 

1.32 
2.29 

6.82 
11.81 
17.83 
28.21* 
39.51 
51*.la 

3.59 
7.23 

11.28 
22.32 
3U.59 
52.36 

.001 

.002 
.003 
.008 
.015 

.033 

.060 

.13 

.33 

.69 

1.26 
3.25 
6.72 

15.37 
28.35 
50. la 

.001 

.003 

.007 
.011* 
.031* 
.11 
.26 

.55 
1.71 
1*.13 

11.35 
21*. 15 
1*9.08 

.001 

.002 

.005 

.021 

.061* 

.16 

.67 
2.02 
7.29 

19.25 
1*7.93 



TABLE 3 

Table of Mean Life Multipliers 

Approximate Values for u   Ju. 
•95'   .10 

11 16 
12 11» 
13 13 
lit 12 
15 11 

6.1i 

6.0 
5.6 
5.2 
5.0 
Iu8 

3.2 
3.0 
2.8 
2.7 
2.5 

2.1« 
2.3 
2.2 
2.2 
2.1 

1.7 1.6 
1.7 1.5 
1.6 1.5 
1.6 1.5 
1.6 1.5 

l.i* 
1.4 
i-U 
1.1» 
1.1» 

1.3 
1.3 
1.3 
1.3 
1.3 

1.3 
1.2 
1.2 
1.2 
1.2 

1.2 
1.2 
1.2 
1.2 
1.2 



TABLE ija 

Table of Sampling Plans for ß - 2/3 

(t/ti) x 100 Ratio for which P(A) - .10 (or Less) 

(VW x 100 ratios in parentheses are for P(A) - .95 (or more) 



TABLE lib 

Table of Sampling Plans for ß - 1/2 

1 . 

c 
(t/ji) x 100 Ratio for which P(A) - .10 (or less) 

- 

100   50 25 10 5 2.5 1 0.5 0.25 '    0.1 o.o5| 0.0251 o.oi 
0 2 

(.03) 
3 

(.02) 
1* 

(.01) 
6 8 11 17 23 33 52 73 103 165 

1 it 
(.52) 

5 
(.32) 

7 
(.16) 

10 
(.07) 

13 
(.01*) 

18 
(.02) 

28 
(.01) 

1*0 56 88 121* 177 278 

2 5 
(2.2) 

7 
(.91*) 

9 
(.51*) 

13 
(.21*) 

18 
(.12) 

25 
(.05) 

39 
(.02) 

55 
(.01) 

77 
(.01) 

120 172 21*1 381 

3 7 
(3.3) 

9 
(1.7) 

12 
(.85) 

17 
(.1*0) 

23 
(.21) 

32 
(.10) 

1*9 
(.01*) 

69 
(.02) 

96 
(.01) 

153 215 303 1*78 

U 9 
(U.l) 

11 
(2.5) 

11* 
(1.1*) 

20 
(.60) 

28 
(.30) 

38 
(.15) 

59 
(.06) 

82 
(.03) 

115 
(.02) 

183 
(.01) 

258 362 571 

5 10 
(6.1») 

13 
(3.3) 

16 
(1.9) 

2i* 
(.75) 

32 
(.1*0) 

1*5 ' 68 
(.19)1(.08) 

96 
(.01*) 

131* 
(.02) 

213 
(.01) 

299 1*20 663 

6 12 
(7.2) 

11* 
(1*.7) 

19 
(2.2) 

27 
(.91*) 

37 
(.1*6) 

51 
(.21*) 

78 
(.10) 

109 
(.05) 

155 
(.02) 

21^2 
(.01) 

339 1*77 753 

7 13 
(9.7) 

16 
(5.3) 

21 
(2.6) 

30 
(1.1) 

1*1 
(.55) 

57 
(.28) 

87 
(.11) 

122 
(.06) 

173 
(.03) 

270 
(.01) 

379 
(.01) 

533 81*1 

b 
(12) 

18 
(6.0) 

23 
(3.2) 

31* 
(1.2) 

1*6 
(.61) 

63 
(.33) 

96 
(.13) 

131* 
(.07) 

191 
(.03) 

298 
(.01) 

las 
(.01) 

589 929 

9 16 
(12) 

20 
(6.1*) 

26 
(3.3) 

37 
(1.1*) 

50 
(.73) 

69 
(.36) 

105 
(.11*) 

11*7 
(.08) 

208 
(.01*) 

326 
(.01) 

1*57 
(.01) 

61*3 1,015 

1 

1 
1 

10 17 
(15) 

22 1 
(6.8) 

28 
(3.7) 

1*0 
(1.5) 

51* 
(.78) 

77 
(.38) 

118 
(.15) 

162 
(.08) 

226 
(.01*) 

353 
(.02) 

1*96 
(.01) 

698 1,101 

11 19 
(16) 

23 
(8.0) 

30 
(U.l) 

1*3 
(1.6) 

58 
(.83) 

83 
(.1*0) 

126 
(.16) 

175 
(.08) 

21*1* 
(.01*) 

380 
(.02) 

531* 
(.01) 

752 1,186 

12 20 
(17) 

25 
(8.8) 

32 
(1*.6) 

1*7 
(1.7) 

66 
(.87) 

89 
(.1*2) 

135 
(.17) 

187 
(.09) 

261 
(.01*) 

1*07 
(.02) 

572 
(.01) 

805 1,271 

13 22 
(18) 

27 
(9.0) 

31* 
(5.0) 

50 
(1.9) 

70 
(.90) 

95 
(.1*1*) 

11*1* 
(.19) 

200 
(.09) 

278 
(.05) 

1*31* 
(.02) 

610 
(.01) 

858 1,355 

. 
12» 23 

(19) : 
29 

(9.2) 
37 

(5.0) 
53 

(2.0) 
75 

(.92) 
101 

(.1*7) 
153 
(.20) 

212 
(.10) 

295 
(.05) 

1*61 
(.02) 

61*8 
(.01) 

911 
(.01) 

1,1*38 

15 25 
(19) 

31 
(9.1*) 

39 
(5.0) 

56 
(2.2) 

79 
(.98) 

107 
(.1*9) 

162 
(.21) 

22U 
(.11) 

312 
(.05) 

1*88 
(.02) 

685 
(.01) 

961* 
(.01) 

1,521 

(Vn) . K 100 ratios in pa. renthe ses ar« 9 for P(A) f .95 ( or raor e) 



6 

7 

8 

9 

10 

11 

12 

13 

11» 

15 

TABLE kc 

Table of Sampling Plans for ß - 1 

(W) x 100 Ratio for which P(A)  -  .10  (or less) 

100 

3 
(1.7) 

5 
(8.0) 

7 
ilk) 

9 
(19) 

11 
(22) 

13 
(25) 

50 

Hi 
(30) 

16 
(33) 

18 
(35) 

20       34 
(36)    (16) 

5 
(1.0) 

9 
(U.2) 

12 
(7.1*) 

15 
do) 

19 
(12) 

22 
(13) 

25 

25 
(15) 

28 
(16) 

31 
(17) 

10 
(.51) 

17 
(2.1) 

23 
(3.7) 

29 
(5.0) 

3U 
(6.2) 

UO 
(7.0) 

10 

22 
(38) 

37 
(19) 

23        hO 
(UO)     (20) 

25 
0*2) 

27 
(U2) 

29 
(hh) 

31 
(U*) 

1*6 
(7.5) 

51 
(8.2) 

57 
(9.0) 

62 
(9.3) 

70 
(9.5) 

21* 
(.20) 

1*0 
(.90) 

55 
(1.5) 

69 
(2.0) 

82 
(2.1*) 

96 
(2.8) 

i*3 
(20) 

1*5 
(21) 

1*8 
(22) 

51 
(22) 

76 
(9.8) 

81 
(10) 

86 
(10) 

91 
(11) 

97 
(11) 

109 
(3.0) 

122 
(3.3) 

135 
(3.5) 

11*7 
(3.7) 

162 
(3.9) 

1*6 
(.11) 

79 
(.1*5) 

108 
(.76) 

135 
(1.0) 

I6ii 
(1.2) 

191 
(1.1*) 

2.5 

175 
(1*.0) 

187 
(1*.2) 

200 
(U.3) 

212 
(U.l*) 

22U 
(1*.6) 

216 
(1.5) 

2i|2 
(1.7) 

267 
(1.8) 

292 
(1.9) 

316 
(2.0) 

92 
.06) 

158 
.22) 

216 
.38) 

271 
.50) 

321* 
.61) 

376 
.69) 

0.5 

31*1 
(2.1) 

365 
(2.2) 

389 
(2.2) 

1*13 
(2.3) 

1*37 
(2.1*) 

1*27 
(.77) 

1*77 
(.83) 

527 
(.89) 

576 
(.91*) 

62li 
(1.0) 

231 
(.02) 

389 
(.09) 

533 
(.15) 

669 
(.20) 

800 
(.21*) 

928 
(.28) 

1*61 
(.01) 

778 
(.05) 

1,065 
(.08) 

1,337 
(.10) 

1,600 
(.12) 

1,855 
(.11*) 

0.25 

672 
(1.1) 

720 
(1.1) 

768 
(1.1) 

815 
(1.1) 

863 
(1.2) 

1,051* 
(.31) 

1,178 
(.31*) 

1,300 
(.36) 

1,1*21 
(.38) 

1,51*1 
(.1*0) 

1,660 
(.1*2) 

1,780 
(.1*3) 

1,896 
(.1*5) 

2,013 
(.1*6) 

2,130 
(.1*7) 

2,107 
(.16) 

2,355 
(.17) 

2,600 
(.18) 

2,81i2 
(.19) 

3,082 
(.20) 

922 

1,556 
(.02) 

2,129 
(.01*) 

2,673 
(.05) 

3,200 
(.06) 

3,710 
(.07) 

0.1 

1*,213 
(.08) 

1*,709 
(.08) 

5,200 
(.09) 

5,683 
(.10) 

6,163 
(.10) 

2,303 

3,890 
(.01) 

5,322 
(.02) 

6,681 
(.02) 

8,000 
(.02) 

9,275 
(.03) 

0.05 

3,320 
(.21) 

3,557 
(.22) 

3,792 
(.22) 

1*,026 
(.23) 

1*,260 
(.21*) 

6,6U0 
(.10) 

7,113 
(.11) 

7,58U 
(.11) 

8,052 
(.12) 

8,517 
(.12) 

105-2 
(.03) 

118-2 
(.03) 

130-2 
(.01*) 

11*2-2 
(.01*) 

15U-2 
(.01*) 

1*,606 

7,780 

106-2 
(.01) 

13U-2 
(.01) 

160-2 
(.01) 

186-2 
(.01 

0.025 0.01 

166-2 
(.01*) 
178-2 
(.01*) 

190-2 
(.05) 

201-2 
(.05) 

213-2 
(.05) 

211-2 
(.02) 

235-2 
(.02) 

260-2 
(.02) 

28ii-2 
(.02) 

308-2 
(.02) 

9,212 

156-2 

213-2 

267-2 

320-2 

371-2 
(.01) 

332-2 
(.02) 

336-2 
(.02) 

379-2 
(.02) 

1*03-2 
(.02) 

1*26-2 
(.02) 

1*21-2 
(.01) 

1*71-2 
(.01) 

520-2 
(.01) 

568-2 
(.01) 

616-2 
(.01) 

230-2 

389-2 

532-2 

668-2 

800-2 

928-2 

66k-2 
(.01) 

711-2 
(.01) 

758-2 
(.01) 

805-2 
(.01) 

852-2 
(.01) 

105-3 

118-3 

130-3 

11*2-3 

15U-3 

166-3 

178-3 

190-3 

201-3 

213-3 

(t/u) x 100 ratios in parentheses are for P(A) -  ,95 (or more) 

The figure following the dash in sample size numbers shows the number of zeros to 
addj for example, 15U-3 - 151*,000. 



10 

n 

12 

13 

11* 

15 

TABUS kd 

Table of Sampling Plans for ß  - 1 2/3 

(t/V) x 100 Ratio for which P(A) - ,10 (or less) 

100 

3 
(9.8) 

50 

9 
(5.0) 

16 
(22)     (12) 

25 15 

8 
(31) 

10 
(38) 

12 
(U2) 

Hi 
(ii6) 

17 
(U7) 

19 
(50) 

21 
(52) 

23 
(5ii) 

2li 
(57) 

22 
(16) 

28 
(19) 

33 
(21) 

39 
(23) 

26 
(59) 

26 
(60) 

30 
(61) 

33 
(61) 

35 
(62) 

lili 
(25) 

ii9 
(26) 

5U 
(27) 

59 
(28) 

68 
(28) 

28 
(2.5) 

li8 
(5.9) 

66 
(8.1) 

83 
(9.6) 

100 
(11) 
116 

(12) 

66 
(1.5) 

112 
(3.5) 

155 
(li.8) 

19li 
(5.7) 

232 
(6.10 

26;? 

10 

129 
(1.0) 

220 
(2.3) 

301 
(3.2) 

378 
(3.8) 

US2 
(U.3) 

525 
(U.6) 

8 

132 
(12) 

HiS 
(13) 

165 
(13) 

181 
(Hi) 

196 
(Hi) 

73 
(29) 

78 
(29) 

83 
(29) 

88 
(30) 

93 
(30) 

211 
(15) 

226 
(15) 

21*1 
(15) 

256 
(15) 

270 
(16) 

306 
(7.U) 

3ii2. 
(7.7) 

377 
(8.1) 

lil2 
(8.3) 

lili7 
(8.6) 

U82 
(8.9) 

516 
(9.0) 

550 
(9.1) 

58U 
(9.3) 

618 
(9.U) 

596 
(li.9) 

666 
(5.2) 

735 
(5.ii) 

803 
(5.6) 

871 
(5.7) 

189 
(.80) 

319 
(1.9) 

ii37 
(2.6) 

5U8 
(3.1) 

656 
(3.1i) 

761 
(3.7) 

938 
(5.9) 

1,005 
(6.0) 

1,072 
(6.1) 

1,138 
(6.3) 

1,203 
(6.1i) 

861* 
(3.9) 

965 
(li.2) 

1,066 
(li.3) 

1,165 
(U.5) 

1,263 
(li.6) 

U12 
(.50) 

695 
(1.2) 

951 
(1.6) 

l,19li 
(1.9) 

l,li28 
(2.1) 

1,657 
(2.3) 

1,881 
(2.5) 

2,102 
(2.6) 

2,321 
(2.7) 

2,537 
(2.8) 

2,752 
(2.9) 

591 
(.liO) 

998 
(.96) 

1,365 
(1.3) 

l,7Hi 
(1.5) 

2,050 
(1.7) 

2,379 
(1.9) 

2.5- 

1,361 
(li.7) 

l,li58 
(li.8) 

1,55U 
(U.9) 

1,650 
(5.0) 

l,7li6 
(5.1) 

2,961* 
(2.9) 

3,176 
(3.0) 

3,386 
(3.1) 

3,595 
(3.1) 

3,803 
(3.2) 

2,701 
(2.0) 

3,019 
(2.1) 

3,333 
(2.2) 

3,61*3 
(2.2) 

3,951 
(2.3) 

1,280 
(.25) 

2,162 
(.60) 

2,957 
(.81) 

3,712 
(.96) 

li,lili2 
(1.1) 

5,153 
(1.2) 

1.5 

li,256 
(2.3) 

li,560 
(2.1*) 

U,862 
(2.5) 

5,162 
(2.5) 

5,li60 
(2.6) 

5,852 
(1.3) 

6,51iO 
(1.3) 

7,220 
(l.li) 

7,893 
(l.li) 

3,031 
(.15) 

5,119 
(.35) 

7,003 
(.1*9) 

8,791 
(.58) 

105-2 
(.65) 

122-2 
(.69) 

6,061 
(.10) 

102-2 
(.23) 

11*0-2 
(.32) 

176-2 
(.38) 

210-2 
(.1*2) 

2liU-2 
(.li5) 

0.5 

277-2 
(.Ii8) 

310-2 
(.51) 

8,560 203-2 
(1.5)  (.86) 

9,222 
(1.5) 

9,879 
(1.5) 

105-2 
(1.6) 

112-2 
(1.6) 

118-2 
(.16) 

139-2 
(.75) 

155-2 
(.78) 

171-2 
(.80) 

187-2 37li-2 
(.81i)  (.55) 

li05-2 
(.57) 

l8i*-2 
(.05) 

311-2 
(.11) 

li26-2 
(.16) 

53li-2 
(.19) 

61|0-2 
(.21) 

7li2-2 
(.23) 

0.25 

8U3-2 
(.25) 

9U2-2 
(.26) 

576-2 
(.03) 

973-2 
(.06) 

133-3 
(.08) 

167-3 
(.09) 

200-3 
(.10) 

232-3 
(.11) 

218-2 
(.89) 

23li-2 
(.90) 

21*9-2 
(.92) 

265-2 
(.9W 
280-2 
(.95) 

3li2-2 10h'3 
(.53)  (.27) 

llli-3 
(.28) 

123-3 
(.29) 

li37-2 133-3 
(.58)|(.30) 

1*68-2 
(.59) 

li99-2 
(.61) 

530-2 
(.62) 

560-2 
(.63) 

11*2-3 
(.30) 

152-3 
(.31) 

161-3 
(.31) 

170-3 
(.32) 

263-3 
(.12) 

29li-3 
(.13) 

325-3 
(.13) 

355-3 
(.Hi) 

385-3 
(.Hi) 

lil5-3 
(.15) 

1*1*5-3 
(.15) 

li75-3| 
(.15) 

505-3 
(.16) 

535-3 
(.16) 

(t/p.) x 100 ratios in parentheses are for P(A) - .95 (or more) 

The figure following the dash in sample size numbers shows the number of zeros 
to add; for example, 218-2 - 21,800. 



TABI£ its 

Table of Sampling Plans for ß - 2 

(VtQ x 100 Ratio for ^^ p(A) . #10 (or leg8) 

loo    50      25      15 

1(29) 

be) 

12        101 8 

51 

131 
(2.2) 

223 
(k.S) 

305 
(5.8) 

382 1    597 
(6.7) (5.W 

1*571    711! 
(7. W 1(5.9) 

206 
(1.8) 

(3.6) 

U76i 
(1».7) 

530 
(7.9) 

829 
(6.3) 

296 
(1.5) 

ii99 
(3.0) 

683 
(3.9) 

857 
(4.5) 

1,025 
(5.0) 

1,190 
(5.3) 

1,152 
(.76) 

1,9U5 
(1.5) 

10 

120 

9ia 
(6.6) 

1,051 
(6.9) 

1,161 
(7.2) 

1,272; 
(7.i*) 
1,376 
(7.5) 

(33)    (17) 

9h9 
(9.6) 

1,017 
(9.8) 

l,08ii 
(.(10) 

1,151 
do) 

1,217 |l,902 
(10) (8.2) 

1,482 
(7.7) 

1,588 
(7.8) 

1,693 
(8.0) 

1,798 
(8.1) 

1,351 
(5.6) 

1,510 
(5.8) 

1,667 
(6.0) 

1,822 
(6.1) 

1,976 
(6.3) 

1,06U 
(3.1)| 

1,336 
(3.6) 

1,599j 
(4.0) 

1,8551 
(4.2)1 

2,128 
(6.1») 
2,280 
(6.5) 

2,431 
(6.6) 

2,581 
(6.7) 

2,730 
(6.8) 

2,106 
(4.5) 

2,351* 
(4.6) 

2,600 
(4.8) 

2,8U 
(4.9), 
3,081 
(5.0) 

3,341 
(2.3) 

3,977 
(2.5) 

4,638 
(2.7) 
5,211i 
(2.8) 

3,320 
(5.1) 

3,556 
(5.2) 

3,792 
(5.3) 

li,026 
(5.4) 

U,258 
(5.5) 

5,886 
(2.9) 

6,li98 
(3.0) 

7,103 
(3.1) 

7,701^ 
(3.2) 

1,772 
(.62) 

2,993 
(1.2) 

|M94 
(1.6) 

5,140 
(1.8) 

6,150 
(2.0) 

7,135 
(2.2) 

8,299 
(3.3) 

8,891 
(3.3) 

9,1479 
i3.k) 
101-2 
(3.1;) 

106-2 
(3.5) 

9,055 
(2.k) 

9,997 
(2.4) 

109-2 
(2.5) 

1119-2 
(2.6) 

k»700 
(.38) 

7,939 
(.76) 

109-2 
(.98) 

136-2 
(1.1) 

163-2 
(1.2) 

189-21 
(1.3) 

1.5 

128-2 
(.23) 
216-2 
(.1*6) 

296-2 
(.60) 

288-2 
(.16) 

486-2 
(.30) 

665-2 
(.40) 

371-21835-2 
(•70)j(.47) 

1*1*4-21999-2 
(.76)  (.51) 

515-2 116-3 
(.81), (.51,) 

33l*-3 
(.210 

128-2 
(2.6) 

137-2 
(2.7) 

!l46-2 
(2.7) 

155-2 
(2.8) 

161^-2 
(2.8) 

215-2 
(1.4) 
2I1O-2 
(1.5) 
265-2 
(1.5) 
290-2 
(1.5) 
311»-2 
(1.6) 

585-21132-3 
(.85) (.57) 
651*-2 
(.88) 

722-2 
(.91) 

147-3 
(.60) 

162-3 
(.62) 

339-2 
(1.6) 

'363-2 
(1.6) 

387-2 
(1.7) 
1*11-2 
(1.7) 

435-2 
(1.7) 

789-2 178-3 
(.91*)  (.63) 

856-2 193-3 
(*96) (.65) 
922-2 
(9.8) 

i988-2 
(1.0) 

20763 
(.66) 

222-3 
U67) 

(' 

105-3)237-3 
(1.0)   (.68); 

112-3'252-3 
(1.0) 

118-3 
(1.0) 

(.69) 

266-3 
(.70) 

IO6-I1 
(.36) 

(t/iO x 100 ratios in parentheses are for P(A) -  .95 (or more) 

t^aSrSr^iÄ nS-^utST' ^ "^ ShOW8 the ™*~ <* —3 



TABLE kf 
Table of Sampling Plans for ß 2 1/2 

n 

100 

(t/tx) x 100 Ratio for which P(A) -  .10 (or leas) 

25       IS 

31 
(8.7) 

h6       72 
(23)    (19) 

109 
(23) 

81      127 
(29) 

292 
(13) 

61    18 
(61) 

11 

121    31 
(70) 

131    33 
(71) 

lldi 
(25) 

103     163 
(31)    (25) 

180 
(26) 

122i     197 
(32)|  (27) 

2U* 
(27) 

515 
(16) 

lt0Ut 
(7.8) 

1,250 
(8.5) 
1,1*50 
(9.0) 

lii8 
(33) 
158 

(31;) 
168 

(3U) 

230 
(28) 

725 
(18) 

1,61^6 
(9.1i) 

1,81^0 
(9.7) 

2,220 
(10)| 

2,1408 
(10) 

623 
(2.6) 

1,052 
(li.6) 

1,1*39 
(5.6) 

1,806 
(6.3) 
2,161 
(6.8) 

2,507 
(7.2) 

1,002 
(2.2) 

1,692 
(3.8) 

2,311* 
a.7) 
2,905 
(5.2) 

3,1*76 
(5.6) 

li,033 
(6.0) 

8 

1,772 
(1.7) 

2,879 
(1.1*) 

2,993 1^,863 
(3.0)   (2.5) 

li,09l*l6,653 
(3.7)  (3.1) 

5,11*0 8,352 
U.2) (3.1*) 

6,150|9,993 

2,81*7 
(7.5) 
3,182 
(7.7) 

1*,580 
(6.2) 

5,118 
(6.10 
5,65oi 
(6.6) 

(1*.5) 

7,135 
(li.7) 

8,102 
(1*.9) 

9,055 
(5.1) 

9,997 
(5.2) 

(3.7) 

116-2 
(3.9) 

5,618 
(1.1) 
9,1*88 
(1.9) 

130-2 
(2.3) 
163-2 
(2.6) 

195-2 
(2.8) 
226-2 
(3.0) 

2.5      1.5 

279 
(29) 
295 

(29) 

879 
(18) 
930 

(19) 

2,591* 
(11) 

2,779 
(11) 

2,963 
(11) 

3,11*5 
(11) 

3,327 
(11) 

1*,1*86 
(8.10 

6,699. 
(6.8) 

119-2 
(5.1*) 

132-2 
(l*.l) 
11*7-2 
a.2) 
162-2 
(1*.3) 
178-2 
(l*.l*)l 

257-2 
(3.1) 

287-2 
(3.2) 

317-2 
(3.3) 
31*6-2 
(3.1*) 

9,596 
(.88) 

162-2 
(1.5) 
222-2 
(1.9) 

278-2 
(2.1) 

333-2 
(2.3) 

386-2 
(2.1*) 

320-2 
(.55) 
51*0-2 
(.96) 

739-2 
(1.2) 

928-2 
(1.3) 
111-3 
(1.10 
129-3 
(1.5) 

1*39-2 1^6-3 
(2.5)  (1.6) 

115-3 
(.33) 
19l*-3 
(.58) 

266-3 
(.71) 

33l*-3 
(.80) 

1*00-3 
(.86) 

l*61*-3 
(.91) 

7,217 128-2 207-2 
(7.0)|{5.5)  a.6) 

1*90-2 
(2.6) 

51*1-2 
(2.7) 
592-2 
(2.7) 

163-3 
(1.6) 

180-3 
(1.6) 

527-3 
(.91*) 

589-3 
(.97) 

650-3 
(1.0) 

197-3 710-3 
(1.7)  (1.0) 

61*2-2 21^-3 
(2.8)|(1.7) 

l*,806i 7,732 137-2| 222-2 
(8.6)j (7.1) 

5,121a 8,21*3 
(8.7)   (7.1) 

5,1*1*0 
(8.8) 

5,755 
(8.8) 

(5.6)|(k.6) 

11*6-2 237-2 
(5.7)  (1*.7) 

8,752 155-2 
(7.2) 
9,258 
(7.3) 

(5.8) 
I6I1-2 
(5.8) 

1*05-2 
(3.5) 
l*3l*-2 
(3.5) 

692-2 
(2.8) 

71*1-2 
(2.9) 

231-3 
(1.7) 

2li7-3 
(1.8) 

770-3 
(1.0) 

1*62-2 790-2 
(3.6)   (2.9) 

252-2 
(1*.7) 
266-2 
(1*.8) 

1*91-2 
(3.6) 
519-2 
(3.7) 

839-2 
(2.9) 
887-2 
(3.0) 

263-3 
(1.8) 

280-3 
(1.8) 
296-3 
(1.8) 

889-3 
(1.1) 
91*8-3 
(1.1) 

101-k 
(1.1) 
106-U 
(1.1) 

(tAO x 100 ratios in parentheses are for P(A) - .95 (or more) 

JS; Ä^IÄ ^ 2Ä!iZe «-^•h~ ^ number of 



TABLE kg 

Table of Sampling Plans for ß ■ 3 1/3 

100 

k 
(30) 

7 
ih6) 

9 
(56) 

12 
(60) 

Hi 
(65) 

16 
(68) 

65 

Hi 
(21) 

2k 
(32) 

33 
(37) 

li2 
(liO) 

51 
(ii2) 

59 
(M) 

(t/ji) x 100 Ratio for which P(A) - .10 (or less) 

50 

10 

ii 

12 

13 

lii 

15 

19 
(69) 

21 
(71) 

23 
(73) 

26 
(7U) 

28 
(75) 

30 
(76) 

32 
(77) 

35 
(77) 

37 
(78) 

39 
(79) 

67 
(ii6) 

75 
(1*7) 

83 
(1*7) 

90 
(U8) 

101 
(li8) 

3k 
(16) 

57 
(21») 

78 
(28) 

98 
(31) 

117 
(33) 

136 
(310 

108 
ik9) 
116 

(li9) 

12k 
(50) 

131 
(50) 

139 
(51) 

157 
(35) 

176 
(36) 

19li 
(36) 

212 
(37) 

230 
(38) 

2li7 
(38) 

265 
(39) 

283 
(39) 

300 
(39) 

317 
(UO) 

2iO 

70 
(13) 

30 

183 
(9.6) 

119 309 
(19) (lii) 

I6ii I k23 
(23) i (17) 

25 

206 
(25) 

21*6 
(26) 

286 
(27) 

531 
(19) 

635 
(20) 

737 
(21) 

325 
(28) 

363 
(29) 

liOO 
(29) 

ii38 
(30) 

ii75 
(30) 

511 
(31) 

51i8 
(31) 

836 
(21) 

935 
(22) 

1,032 
(22) 

1,128 
(22) 

1,228 
(23) 

33li 
(8.0) 

56U 
(12) 

772 
(Hi) 

969 
(15) 

1,159 
(16) 

l,32i5 
(17) 

20 

1,318 
(23) 

1,102 
(23) 

58U 1,505 
(31)    (210 

1,527 
(17) 

1,698 
(18) 

1,66k 
(18) 

2,059 
(19) 

2,233 
(19) 

698 
(6.10 

1,179 
(9.8) 

1,613 
(11) 

2,025 
(12) 

2,1*23 
(13) 

2,811 
(Hi) 

15 

620 
(32) 

656 
(32) 

1,598 
(210 

1,690 
(210 

2,^06 
(19) 

2,578 
(20) 

2,7li8 
(20) 

2,918 
(20) 

3,086 
(20) 

3,192 
(Hi) 

3,567 
(Hi) 

3,938 
(15) 

U,305 
(15) 

li,669 
(15) 

1,772 
Oi.8) 

2,993 
(7.10 

li,09li 
(8.7) 

5,Hi0 
(9.1*) 

6,150 
(10) 

7,135 
(10) 

12 

8,102 
(11) 

9,055 
(11) 

9,997 
(11) 

109-2 
(11) 

119-2 
(12) 

3,839 
(3.8) 

6,li8U 
(5.8) 

8,870 
(6.8) 

111-2 
(7.5) 

133-2 
(7.9) 

155-2 
(8.2) 

10 

5,030 
(15) 

5,389 
(15) 

5,7li5 
(16) 

6,100 
(16) 

6,U53 
(16) 

128-2 277-2 
(12)   (9.3) 

176-2 
(8.1*) 

196-2 
(8.7) 

217-2 
(8.8) 

237-2 
(9.0) 

257-2 
(9.2) 

6,979 
(3.2) 

118-2 
(li.8) 

161-2 
(5.7) 

202-2 
(6.2) 

2k2-2 
(6.6) 

281-2 
(6.8) 

8 6.5 

319-2 
(7.0) 

357-2 
(7.2) 

39li-2 
(7.1*) 

li30-2 
(7.5) 

1*67-2 
(7.6) 

H*9-2 
(2.5) 

251-2 
(3.9) 

3li3-2 
(1*.5) 
li31-2 
(ii.9) 

516-2 
(5.2) 

598-2 
(5.10 

679-2 
(5.6) 

759-2 11*7-3 
(5.8) (I*.?) 

288-2 
(2.1) 
li86-2 
(3.2) 

665-2 
(3.7) 

835-2 
(1*.0) 

999-2 
(ii.3) 

116-3 
(li.li) 

132-3 
(ii.6) 

698-2 
(1.6) 

118-3 
(2.1*) 

161-3 
(2.8) 

202-3 
(3.1) 

2U2-3 
(3.3) 

281-3 
(3.1») 

137-2 
(12) 

Hi6-2 
(12) 

155-2 
(12) 

161^-2 
(12) 

296-2 
(9.1*) 

316-2 
(9.1*) 

335-2 
(9.5) 

355-2 
(9.6) 

162-3 
(li.8) 

838-2 
(5.9) 

917-2 
(6.0) 

99li-2 193-3 
(6.0)  (li.?) 

503-2 107-3 
(7.7)|(6.1) 

539-2 
(7.8) 

57li-2 
(7.9) 

610-2 
(8.0) 

6U5-2 
(8.0) 

115-3 
(6.2) 

122-3 
(6.2) 

130-3 
(6.3) 

137-3 
(6.10 

319-3 
(3.5) 

357-3 
(3.6) 

39li-3 
(3.7) 

178-3 U30-3 
(li.9)  (3.7) 

1*67-3 
(3.8) 

207-3 
(5.0) 

222-3 
(5.0) 

237-3 
(5.1) 

252-3 
(5.2) 

266-3 
(5.2) 

503-3 
(3.8) 

539-3 
(3.9) 

57li-3 
(3.9) 

610-3 
(3.9) 

6U5-3 
(li.O) 

(t/V) x 100 ratios in parentheses are for P(A) - .95 (or more) 

The figure following the dash in sample size numbers shows the number of 
zeros to add; for example, 319-3 - 319,000. 



TABLE iih 

Table of Säugling Plans for ß - U 

n 

100 

(37) 

7 
(53) 

9 
(62) 

12 
(66) 

15 
(68) 

17 
(71) 

(t/n.) x 100 Ratio for which P(A) - .10 (or less) 

80       65 

9 
(30) 

15 
(kh) 

21 
(50) 

26 
(5U) 

50 1(0 

10 

19 
(710 

22 
(75) 

2k 
(76) 

27 
(77) 

29 
178) 

55 
(19) 

93 
(27) 

128 
(31) 

57 I   162 
(1*10 j (33) 

20 
(25) 

33 
(36) 

1*6 
(1*0) 

31       69 
(56) | (1*6) 

37 
(58) 

11 

12 

13 

11* 

15 

31 
(79) 

33 
(80) 

36 
(81) 

38 
(82) 

1*0 
(82) 

1*2 
(59) 

1*7 
(60) 

52 
(61) 

57 
(62) 

61* 
(62) 

80 
(1*8) 

69 
(63) 

71* 
(63) 

79 
(61*) 

81* 
(61*) 

89 
(61*) 

91 
(1*9) 

102 
(50) 

112 
(50) 

123 
(51) 

136 
(51) 

191* 
(35) 

225 
(36) 

131* 
(15) 
226 

(22) 

312 
(25) 

391 
(27) 
1*68 

(28) 

51*3 
(29) 

30 

11*7 
(52) 

157 
(52) 

167 
(53) 
178 

(53) 

188 
(53) 

255 
(37) 

286 
(38) 

315 
(39) 

31*1* 
(39) 

373 
(1*0) 

1*02 
(1*0) 

616 
(30) 

689 
(30) 

760 
(31) 

831 
(31) 
901 

(32) 

1*19 
(12) 

708 
(16) 

968 
(19) 

1,215 
(20) 

1,1*52* 
(21) 

1,687 
(22) 

25 

971 
(32) 

l*3l|l,oliO 
(1*0)    (32) 

1*60 
(U) 

1*88 
(ia) 

516 
(ia) 

1,915 
(22) 

2,11*0 
(23) 

2,363 
(23) 

2,583 
(23) 

2,802 
(21*) 

886 
(9.1*) 

1,1*97 
(H*) 

2,01^7 
(16) 

2,570 
(17) 

3,075 
(18) 

3,568 
(18) 

20       15 

1*,051 9,575 
(19)    (15) 

2,091* 
(7.6) 

3,537 
(11) 

1*,839 
(12) 

6,071* 
(13) 

7,268 
(H*) 

8,1*32 
(15) 

6,771* 
(5.8) 

lll*-2 
(8.0) 

157-2 
(9.2) 

197-2 
(10) 

235-2 
(10) 

273-2 
(11) 

12 

l61*-2 
(1*.7) 

10 n 
329-2 
(l*.o) 

278-2 556-2 
(6.5) (5.6) 

1,109 
(33) 

1,177 
(33) 

1,21*6 
(33) 

3,018 
(21*) 

3,233 
(21*) 

3,1*1*7 
(21*) 

3,660 
(25) 

3,872 
(25) 

1*,528 
(19) 

1*,998 
(19) 

5,1*61* 
(20) 

5,926 
(20) 

6,381* 
(20) 

6,81*0 
(20) 

7,292 
(20) 

7,71*2 
(21) 

8,190 
(21) 

107-2 
(15) 

118-2 
(15) 

129-2 
(16) 

11*0-2 
(16) 

151-2 
(16) 

162-2 
(16) 

172-2 
(16) 

183-2 
(17) 

19l*-2 
(17) 

310-2 
(11) 

31*6-2 
(U) 

382-2 
(12) 

ia8-2 
(12) 

1*53-2 
(12) 

380-2 
(7.1*) 

1*77-2 
(7.9) 

571-2 
(8.3) 
663-2 
(8.6) 

760-2 
(6.2) 

951*-2 
(6.6) 

8|    6.5 

768-2 
(3.2) 

130-3 
(1*.5) 

177-3 
(5.1) 

223-3 
(5.5) 

lll*-3 266-3 615-3 
(7.0)   (5.8)!(U.7) 

177-3 
(2.6) 

299-3 
(3.7) 

1*09-3 
(1*.2) 

5ll*-3 
(U.5) 

752-2 
(8.8) 

8la-2 
(9.0) 

928-2 
(9.1) 

101-3 
(9.2) 

110-3 
(9.1*) 

133-3 
(7.2) 

150-3 
(7.1*) 

309-3 
(6.0), 

713-3 
(1*.9) 

351-3 
(6.1) 

168-3 392-3 
(7.6)  (6.2) 

186-3 
(7.7) 

203-3 
(7.8) 

1*88-2 
(12) 

523-2 
(12) 

558-2 
(12) 

592-2 
(12) 

626-2 
(12) 

119-3 
(9.1*) 

127-3 
(9.5) 

135-3 
(9.6) 

ll*l*-3 
(9.7) 

152-3 
(9.8) 

1*33-3 
(6.3) 

220-3 5ll*-3 
(7.8)  (6.1*) 

237-3 
(7.9) 

251*-3 
(8.0) 

271-3 
(8.1) 

810-3 
(5.0) 

905-3 
(5.1) 
100-1* 
(5.2) 

l*7i*-3|l09-l* 
(6.3)j(5.3) j 

119-1* j 
(5.3) 

553-3 128-1* 
(6.1*) (5.1*) 

593-3 
(6.5) 

632-3 
(6.5) 

288-3 671-3 
(8.2)  (6.6) 

30l*-3 
(8.2) 

710-3 
(6.6) 

137-1* 
(5.)*) 
11*6-1* 
(5.5) 

155-1* 
(5.5) 
161*-1* 
(5.6) 

(t/V) x 100 ratios in parentheses are for P(A) - .95 (or more) 

The figure following the dash in sample size mnnbers shows the number of 
zeros to add; for example, 30l*-3 - 30l*,000. 



TABLE ki. 
Table of Sampling Plans for ß 

n 

c 
(t/V) x 100 Ratio for which P(A) ■ ,10 (or less) 

100 80 65 50 1*5 1*0 35 30 25 20 15 12 10 

0 

1 

2 

3 

k 

5 

U 
(U6) 

7 
(53) 

10 
(68) 

12 
(73) 

15 
(76) 

17 
(78) 

11 
(37) 

19 
(1*9) 

26 
(55) 

33 
(58) 

ho 
(60) 

U6 
(62) 

31 
(30) 

53 
(UO) 

72 
(U5) 

90 
(U7) 
108 

(1*9) 

125 
(51) 

113 
(23) 

193 
(31) 

261* 
(3U) 

331 
(36) 

396 
(38) 

1*60 
(39) 

192 
(21) 

325 
(28) 

1*1*1. 
(31) 

557 
(33) 

667 
(31*) 

773 
(35) 

31*1* 
(19) 

581 
(25) 

795 
(27) 

998 
(29) 

1,191* 
(30) 

1,385 
(31) 

678 
(16) 

1,11*5 
(22) 

1,566 
(21*) 

1,965 
(25) 

2,352 
(26) 

2,728 
(27) 

1,1*1*0 
(Hi) 

2,1*32 
(19) 

3,327 
(21) 

1*,176 
(22) 

1*,997 
(23) 

5,797 
(23) 

3,599 
(12) 

6,079 
(15) 

8,316 
(17) 

10l*-2 
(18) 

125-2 
(19) 

11*5-2 
(19) 

110-2 
(9.1*) 

185-2 
(12) 

253-2 
(Ik) 

318-2 
(HO 

381-2 
(15) 

1*1*2-2 
(15) 

1*61-2 
(7.0) 

778-2 
(9.2) 

106-3 
(10) 

13lt-3 
(11) 

160-3 
(11) 

186-3 
(12) 

135-3 
(5.6) 

229-3 
(7.5) 

313-3 
(8.3) 

393-3 
(8.8) 

1*70-3 
(9.1) 

51*6-3 
(9.1*) 

329-3 
(U.8) 

556-3 
(6.3) 

760-3 
(7.0) 

95U-3 
(7.1*) 

lll*-l* 
(7.6) 

132-1* 
(7.8) 

6 

7 

8 

9 

10 

20 
(79) 

22 
(80) 

25 
(81) 

27 
(62) 

30 
(83) 

53 
(63) 

59 
(6U) 

66 
(65) 

72 
(66) 

81 
(66) 

U43 
(52) 

1.62 
(52) 

179 
(53) 

195 
(SU) 
212 

(51*) 

522 
(1*0) 

583 
(1*0) 

61*1* 
(1*1) 

701* 
(ia) 

763 
(ia) 

878 
(36) 

981 
(36) 

1,083 
(37) 

1,181* 
(37) 

1,281* 
(37) 

1,572 
(32) 

1,757 
(32) 

1,91*0 
(33) 

2,121 
(33) 

2,300 
(33) 

3,098 
(28) 

3,1*63 
(28) 

3,823 
(29) 

1*,179 
(29) 

1*,532 
(29) 

6,583 
(21*) 

7,357 
(21*) 

8,122 
(25) 

8,879 
(25) 

9,630 
(25) 

165-2 
(20) 

18U-2 
(20) 

203-2 
(20) 

222-2 
(20) 

2lil-2 
(21) 

502-2 
(16) 

561-2 
(16) 

619-2 
(16) 

676-2 
(16) 

73l*-2 
(17) 

211-3 
(12) 

235-3 
(12) 

260-3 
(12) 

281*-3 
(12) 

308-3 
(12) 

620-3 
(9.6) 

692-3 
(9.7) 

761*-3 
(9.8) 

836-3 
(10) 

906-3 
(10) 

150-1* 
(8.0) 

168-1* 
(8.1) 

187-1* 
(8.2) 

203-1* 
(8.3) 
220-1* 
(8.1*) 

11 

12 

13 

Hi 

15 

32 
(81*) 

3U 
(8W 

37 
(85) 

39 
(85) 

ui 
(86) 

87 
(66) 

93 
(67) 

99 
(67) 

105 
(68) 

111 
(68) 

228 
(55) 

2hh 
(55) 
261 

(55) 

277 
(56) 

293 
(56) 

822 
(1*2) 
881 

(1*2) 

939 
(1*2) 

997 
(1*3) 

1,055 
(1*3) 

1,381* 
(38) 

1,1*82 
(38) 

1,580 
(38) 

1,678 
(39) 

1,775 
(39) 

2,1*78 
(31*) 

2,655 
(31*) 

2,830 
(31*) 

3,005 
(31*) 

3,178 
(35) 

1*,882 
(29) 

5,230 
(30) 

5,576 
(30) 

5,920 
(30) 

6,263 
(30) 

10l*-2 
(25) 

111-2 
(25) 

116-2 
(26) 

126-2 
(26) 

133-2 
(26) 

259-2 
(21) 

278-2 
(21) 

296-2 
(21) 

311*-2 
(21) 

333-2 
(21) 

790-2 
(17) 

81*7-2 
(17) 

903-2 
(17) 

958-2 
(17) 

101-3 
(17) 

332-3 
(13) 

356-3 
(13) 

379-3 
(13) 

1*03-3 
(13) 

1*26-3 
(13) 

976-3 
(10) 

105-1* 
(10) 

112-1* 
(10) 

118-1* 
(10) 

125-1* 
(10) 

237-1* 
(8.5) 

251*-1* 
(8.6) 

271-1* 
(8.6) 

288-1* 
(8.6) 

30l*-l* 
(8.7) 

(t/ii) x 100 ratios in parentheses are for P(A) - .95 (or more) 

The figure following the dash in sample size numbers shows the number of 
zeros to add; for example, 203-2 > 20,300. 
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